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Fourier Series  and LTI Sys tems  
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Frequency Response  Recall that a  LTI sys tem H with impulse  response  h is  such that 

H { zn}  =  H(z)zn, where  H(z ) = ∑∞  
n= −∞ h(n)z−n . (That is , complex 

exponentia ls  are  eigensequences of LTI sys tems .)  

S ince  a  complex s inusoid is  a  special case of a  complex exponentia l, we 

can reuse  the  above result for the  special case  of complex s inusoids . 

For a  LTI sys tem H with impulse  response  h and a  complex s inusoid e jΩn 

(where  Ω is  real ),  
 

H 
 

e jΩn  
=  H(e jΩ)e jΩn, 

 

where  

H(e jΩ ) =  
∞ 

∑ 
n =−∞  

 

That is , e jΩn  is  an eigensequence of a  LTI sys tem and H(e jΩ) is  the  

corresponding eigenvalue. 

The  function H(e jΩ) is  2π-periodic, s ince  e jΩ  is  2π-periodic. 

We refer to H(e jΩ) as  the  frequency response of the  sys te  m H.        

h(n)e− jΩn  . 
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Fourie r  Series  and LTI Sys tems  
Consider a  LTI sys tem with input x, output y, and frequency response  

H(e jΩ ).  
 

Suppose  that the  N-periodic input x is  expressed as  the  Fourier series  

x(n) =  ∑  ake jkΩ0 n, 
N−1 

k= 0 
 

Using our knowledge about the  eigensequences of LTI sys tems, we can 

conclude  

where  Ω0 =  2π  .  N 

y(n) =   ∑  akH(e jkΩ0 )e jkΩ0 n. 
k= 0 

 

Thus, if the  input x to a  LTI sys tem is  a  Fourier series, the  output y is  a lso 
DTFS 

N−1 

a  Fourier series. More  specifically, if x(n) ←→ ak  then 

y(n) ←→ H(e jkΩ0 )ak. 
DTFS 

The above formula  can be  used to determine  the  output of a  LTI sys tem 

from its  input in a  way that does not require convolution. 
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Filte ring 

In many applications, we want to modify the spectrum of a  s ignal by 

either amplifying or a ttenuating certa in frequency components . 
 

This  process  of modifying the  frequency spectrum of a  s ignal is  called 

filter ing. 

A system that performs a  filtering operation is  called a  filter . 

Many types  of filters  exis t. 

Frequency selective filters pass  some frequencies  with little  or no 

dis tortion, while  s ignificantly a ttenuating other frequencies . 
 

Several bas ic types  of frequency-selective  filters  include: lowpass, 

highpass, and bandpass . 
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Idea l Lowpass  Filte r  An ideal lowpass filter  eliminates  a ll baseband frequency components  

with a  frequency whose  magnitude  is  greater than some cutoff frequency, 

while  leaving the  remaining baseband frequency components  unaffected. 

Such a  filter has  a  frequency response of the  form 

H(e jΩ ) =  

 
1  if |Ω| ≤ Ωc 
 

0 if Ωc <  |Ω| ≤ π, 

where  Ωc is  the  cutoff frequency. 
 

A plot of this  frequency response  is  given below. 
 
 

H(e jΩ) 
 
 

1 
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Idea l Highpass  Filte r  An ideal highpass filter  eliminates  a ll baseband frequency components  

with a  frequency whose  magnitude  is  less  than some cutoff frequency, while  

leaving the  remaining baseband frequency components  unaffected. Such a  

filter has  a  frequency response of the  form 

H(e jΩ ) =  

 
1  if Ωc <  |Ω| ≤ π 
 

0 if |Ω| ≤ Ωc, 

where  Ωc is  the  cutoff frequency. 
 

A plot of this  frequency response  is  given below. 
 
 

H(e jΩ) 
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Idea l Bandpass  Filte r  An ideal bandpass filter  eliminates  a ll baseband frequency components  

with a  frequency whose  magnitude  does  not lie  in a  particular range, while  

leaving the  remaining baseband frequency components  unaffected. 
 

Such a  filter has  a  frequency response of the  form 

H(e jΩ ) =  

 
1  if Ωc1 ≤ |Ω| ≤ Ωc2 
 

0 if |Ω| <  Ωc1 or Ωc2 <  |Ω| <  π, 

where  the  limits  of the  passband are  Ωc1 and Ωc2. 

A plot of this  frequency response  is  given below. 
 

 

H(e jΩ) 
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Part 10 
 

 
 
 

Dis crete-Time Fourier Trans form (DTFT) 
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Motiva t ion for the  Fourie r  Trans form 

Fourier series  provide  an extremely useful representation for periodic 

s ignals . 

Often, however, we need to deal with s ignals  that are  not periodic. A 

more  general tool than the Fourier series  is  needed in this  case. The 

Fourier transform can be  used to represent both periodic and 

aperiodic s ignals . 
 

Since  the  Fourier transform is  essentia lly derived from Fourier series  

through a  limiting process, the  Fourier transform has  many s imilarities  

with Fourier series . 
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Section 10.1 
 

 
 
 

Fourier Trans form 
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Development of the  Fourie r  Trans form 

The (DT) Fourier series  is  an extremely useful s ignal representation. 

Unfortunately, this  s ignal representation can only be  used for periodic 

sequences, s ince  a  Fourier series  is  inherently periodic. 
 

Many s ignals  are  not periodic, however. 
 

Rather than abandoning Fourier series, one  might wonder if we can 

somehow use  Fourier series  to develop a  representation that can also be  

applied to aperiodic sequences. 
 

By viewing an aperiodic sequence  as  the  limiting case  of an N-periodic 

sequence  where  N → ∞, we can use  the  Fourier series  to develop a  more  

general s ignal representation that can be  used for both aperiodic and 

periodic sequences. 
 

This  more  general s ignal representation is  called the  (DT) Fourier 

transform. 

Version: 2016-01-25 



DT Fourie r  Trans form (DTFT) The Four ier  transform of the  sequence  x, denoted F { x}  or X , is  given 

by 
 

∞ 

X (Ω) =  ∑ 
n =−∞  

 

The preceding equation is  sometimes referred to as  Four ier  transform 

analysis equation (or forward Four ier  transform equation ).  

The  inverse Four ier  transform of X , denoted F −1{ X }  or x, is  given by 

x(n)e− jΩn . 

x(n) =  1 
2π 

{  

2π 
X (Ω)e jΩndΩ. 

The preceding equation is  sometimes  referred to as  the  Four ier  transform 

synthesis equation (or inverse Four ier  transform equation). As  a  matter 

of notation, to denote  that a  sequence  x has  the  Fourier transform X , we 

write  x(n) ←→ X (Ω ).  

A sequence  x and its  Fourier transform X constitute  what is  called a  

Four ier  transform pair . 

DTFT 
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Section 10.2 
 

 
 
 

Convergence  Properties  o f the  Fourier Trans form 
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Convergence  of the  Fourie r  Trans form 
For a  sequence  x, the  Fourier transform analys is  equation (i.e., 

X (Ω ) = ∑∞  
−∞  x(n)e− jΩn ) converges  uniformly if 

 

 

∞ 

∑ 
k= −∞ 

 

 

(i.e., x is  absolutely summable). 

|x(k )| < ∞  

For a  sequence  x, the  Fourier transform analys is  equation (i.e .,  

X (Ω ) = ∑∞  
−∞  x(n)e− jΩn ) converges  in the  MSE sense if 

 

 

∞ 

∑ 
k =−∞  

|x(k)| 2 < ∞  

(i.e., x is  square summable ).  
 

For a  bounded Fourier transform X , the  Fourier transform synthes is  

equation (i.e., x(n ) =  1 
2π 

{
2π X (Ω)e jΩndΩ) will a lways  converge, s ince  the  

integration interval is  finite . 
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Section 10.3 
 

 
 
 

Properties  of the  Fourier Trans form 
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